Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles.
نویسندگان
چکیده
We have developed novel Pluronic/chitosan nanocapsules encapsulating iron oxide nanoparticles. These nanocapsules were produced by dispersing hydrophobically-modified iron oxide nanoparticles and amine-reactive Pluronic derivatives in an organic solvent, and subsequently emulsification in an aqueous chitosan solution by ultrasonication. The resultant shell cross-linked nanocapsules had a unique core/shell type nanoreservoir architecture: an inner core encapsulating magnetic nanoparticles and a hydrophilic Pluronic/chitosan polymer shell layer, as confirmed by thermogravimetric analysis and transmission electron microscopy. Confocal laser scanning microscopy revealed that the rhodamine-labeled nanocapsules were efficiently internalized by human lung carcinoma cells upon exposure to an external magnetic field. The present study suggested that these novel nanomaterials could be dually utilized for the magnetically-triggered delivery of various anti-cancer agents and for cancer diagnosis with magnetic resonance imaging.
منابع مشابه
Characterization of Different Functionalized Lipidic Nanocapsules as Potential Drug Carriers
Lipid nanocapsules (LNC) based on a core-shell structure consisting of an oil-filled core with a surrounding polymer layer are known to be promising vehicles for the delivery of hydrophobic drugs in the new therapeutic strategies in anti-cancer treatments. The present work has been designed as basic research about different LNC systems. We have synthesized-and physico-chemically characterized-t...
متن کاملSynthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure
BACKGROUND Fe₃O₄-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. RESULTS Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated...
متن کاملMagnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application.
Stabilized magnetic nanoparticles are the subject of intense research for targeting applications and this work deals with the design, preparation and application of specific core-shell nanoparticles based on ionic crosslinked chitosan. The nanometric size of the materials was demonstrated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) that also proved ...
متن کاملImmune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action ...
متن کاملSynthesis and loading of nanocurcumin on iron magnetic nanoparticles modified with chitosan
Background: Curcuma longa generally known as turmeric includes curcuminoids and sesquiterpenoids as components, which are known to have antioxidative, anticarcinogenic, and anti-inflammatory activities. Iron, magnetite, and hematite as a micronutrient play an important role in physiological and chemical processes. Chitosan is a natural polymer derived from chitin and is recognized as versatile ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomaterials science. Polymer edition
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2008